Space

Virgin Galactic touches the edge of space with Mach 2.9 test flight of SpaceShipTwo

Posted by | commercial space, Gadgets, hardware, Space, Transportation, Virgin Galactic | No Comments

The fourth test flight of Virgin Galactic’s SpaceShipTwo took its test pilots to the very edge of space this morning, reaching just over 52 miles of altitude and a maximum speed of Mach 2.9. It’s another exciting leapfrog of the aspiring space tourism company’s previous achievements.

Takeoff was at 7:30 AM against a lovely sunrise in the Mojave:

Lovely shot of takeoff! WhiteKnightTwo and SpaceShipTwo take to the skies pic.twitter.com/JFcSDVB9jR

— Virgin Galactic (@virgingalactic) December 13, 2018

The actual spacecraft, SpaceShipTwo, was strapped to the belly of WhiteKnightTwo (VSS Unity and VMS Eve specifically) as the latter gave it a ride up to about 45,000 feet.

At that point SpaceShipTwo ignited its rocket engine and started zooming upwards at increasing speed. The 60-second burn of the engine, 18 seconds longer than the third test flight’s, took the craft up to Mach 2.9 — quite a bit faster than before.

After that minute-long burn SpaceShipTwo deployed its “feathers,” helping slow and guide it to a controlled re-entry. It had at this point reached 271,268 feet, approximately 51.4 miles or 82.7 kilometers. Here’s the view from that lofty altitude:

SpaceShipTwo looking back on Spaceship Earth 🌎pic.twitter.com/ynr31mKzzf

— Virgin Galactic (@virgingalactic) December 13, 2018

Now, space “officially” begins by international consensus at 100 km, at what’s called the Karman line. But space-like conditions begin well before that, and a planned altitude of around 80 km was good enough for NASA to load a set of microgravity experiments onto the craft. They even told Virgin “welcome to suborbital space.”

(Update: Virgin Galactic tells me they are basing entry into space on the fact that NASA and the Air Force both award “astronaut wings” to pilots who fly above 50 miles. Notably this is also generally the altitude at which aircraft are more or less no longer governed by traditional aerodynamic principles, having left the atmosphere behind.)

Some have also suggested space should officially start at 80 km instead. So while it may be debated whether Virgin Galactic went to space (the company is saying so), it definitely got close enough to get a taste of it. The next flight seems likely to reach the Karman line, as well.

And the pilots, Mark “Forger” Stucky and CJ Sturckow, are definitely astronauts. No question about that.

Pilots heading to SpaceShipTwo this morning pic.twitter.com/vvvJPsknH8

— Virgin Galactic (@virgingalactic) December 13, 2018

Virgin founder Richard Branson commemorated the event in a press release:

Today, for the first time in history, a crewed spaceship, built to carry private passengers, reached space. Today we completed our first revenue generating flight and our pilots earned their Commercial Astronaut Wings. This is a momentous day and I could not be more proud of our teams who together have opened a new chapter of space exploration.

Powered by WPeMatico

Voyager 2 joins its twin in interstellar space

Posted by | Gadgets, NASA, science, Space, voyager, voyager 2 | No Comments

Voyager 2, the multi-planetary exploratory probe launched in 1977, has finally entered interstellar space, some six years after its twin, Voyager 1, did the same. It’s now about 11 billion miles from Earth, the second-farthest-out human-made object in space.

Interstellar space starts where the sun’s “heliosphere” ends — the big ball of radiation and plasma in which the planets bathe and by which they are protected. Both Voyagers have instruments on board that monitor all this stuff, and both have shown a major drop-off in electrical and plasma activity, suggesting they’ve crossed over.

The exact border of interstellar space is a matter of debate, a great deal of which occurred while Voyager 1 was on the very edge and scientists were arguing whether it was out or not. A consensus was reached, however, and most agree that both probes have now left the heliosphere.

They have not, however, left the solar system, defined more or less by the extent of the Oort cloud, an enormous collection of dust and small objects caught in the sun’s gravity (but just barely). Until the Voyagers leave that, in perhaps 30,000 years, they’re still technically in-system.

Interestingly, although Voyager 2 was the second to enter interstellar space, it was actually the first to launch. The risk of failure for these complex, ambitious probes was high enough that NASA felt it should build two and send them out one after another, and it so happened that Voyager 2 launched 16 days before Voyager 1. However, the latter’s trajectory caused it to exit the ecliptic (the flat disk in which most of the solar system’s objects are found) earlier and at a different angle.

That makes Voyager 2 NASA’s longest-running mission (though not the object in space for longest — early satellites are still floating around up there), and those working on it couldn’t be happier.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Voyager project manager Suzanne Dodd at JPL, in a NASA news release. “This is what we’ve all been waiting for. Now we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

Both Voyagers should continue operating for at least a few more years; their power sources are likely to go out around 2025. At that point they’ll have been in space sending back data for nearly 50 years. Congratulations to the team and, really, to humanity, for doing something so amazing.

Powered by WPeMatico

Rolling, hopping robots explore Earthly analogs of distant planets

Posted by | esa, Europe, Gadgets, hardware, mars, robotics, science, Space | No Comments

Before we send any planet-trotting robot to explore the landscape of Mars or Venus, we need to test it here on Earth. Two such robotic platforms being developed for future missions are undergoing testing at European Space Agency facilities: one that rolls, and one that hops.

The rolling one is actually on the books to head to the Red Planet as part of the ESA’s Mars 2020 program. It’s just wrapped a week of testing in the Spanish desert, just one of many Mars analogs the space program uses. It looks nice. The gravity’s a little different, of course, and there’s a bit more atmosphere, but it’s close enough to test a few things.

The team controlling Charlie, which is what they named the prototype, was doing so from hundreds of miles away, in the U.K. — not quite an interplanetary distance, but they did of course think to simulate the delay operators would encounter if the rover were actually on Mars. It would also have a ton more instruments on board.

Exploration and navigation was still done entirely using information collected by the rover via radar and cameras, and the rover’s drill was also put to work. It rained one day, which is extraordinarily unlikely to happen on Mars, but the operators presumably pretended it was a dust storm and rolled with it.

Another Earth-analog test is scheduled for February in Chile’s Atacama desert. You can learn more about the ExoMars rover and the Mars 2020 mission here.

The other robot that the ESA publicized this week isn’t theirs but was developed by ETH Zurich: the SpaceBok —  you know, like springbok. The researchers there think that hopping around like that well-known ungulate could be a good way to get around on other planets.

It’s nice to roll around on stable wheels, sure, but it’s no use when you want to get to the far side of some boulder or descend into a ravine to check out an interesting mineral deposit. SpaceBok is meant to be a highly stable jumping machine that can traverse rough terrain or walk with a normal quadrupedal gait as needed (well, normal for robots).

“This is not particularly useful on Earth,” admits SpaceBok team member Elias Hampp, but “it could reach a height of four meters on the Moon. This would allow for a fast and efficient way of moving forward.”

It was doing some testing at the ESA’s “Mars Yard sandbox,” a little pen filled with Mars-like soil and rocks. The team is looking into improving autonomy with better vision — the better it can see where it lands, the better SpaceBok can stick that landing.

Interplanetary missions are very much in vogue now, and we may soon even see some private trips to the Moon and Mars. So even if NASA or the ESA doesn’t decide to take SpaceBok (or some similarly creative robot) out into the solar system, perhaps a generous sponsor will.

Powered by WPeMatico

Mars Lander InSight sends the first of many selfies after a successful touchdown

Posted by | Gadgets, Insight, mars, NASA, robotics, science, Space | No Comments

Last night’s 10 minutes of terror as the InSight Mars Lander descended to the Martian surface at 12,300 MPH were a nail-biter for sure, but now the robotic science platform is safe and sound — and has sent pics back to prove it.

The first thing it sent was a couple pictures of its surroundings: Elysium Planitia, a rather boring-looking, featureless plane that is nevertheless perfect for InSight’s drilling and seismic activity work.

The images, taken with its Instrument Context Camera, are hardly exciting on their own merits — a dirty landscape viewed through a dusty tube. But when you consider that it’s of an unexplored territory on a distant planet, and that it’s Martian dust and rubble occluding the lens, it suddenly seems pretty amazing!

Decelerating from interplanetary velocity and making a perfect landing was definitely the hard part, but it was by no means InSight’s last challenge. After touching down, it still needs to set itself up and make sure that none of its many components and instruments were damaged during the long flight and short descent to Mars.

And the first good news arrived shortly after landing, relayed via NASA’s Odyssey spacecraft in orbit: a partial selfie showing that it was intact and ready to roll. The image shows, among other things, the large mobile arm folded up on top of the lander, and a big copper dome covering some other components.

Telemetry data sent around the same time show that InSight has also successfully deployed its solar panels and is collecting power with which to continue operating. These fragile fans are crucial to the lander, of course, and it’s a great relief to hear they’re working properly.

These are just the first of many images the lander will send, though unlike Curiosity and the other rovers, it won’t be traveling around taking snapshots of everything it sees. Its data will be collected from deep inside the planet, offering us insight into the planet’s — and our solar system’s — origins.

Powered by WPeMatico

11 moments from the International Space Station’s first 20 years

Posted by | Gadgets, Government, international space station, ISS, NASA, Roscosmos, Space, TC | No Comments

It was November 20, 1998, when an unprecedented international coalition of astronomers, engineers and rocket scientists saw years of collaboration come to fruition with the launch of the International Space Station’s first component. Since then, the largest spacecraft ever built has hosted innumerable astronauts, experiments and other craft. Here are a few notable moments in the history of this inspiring and decades-spanning mission.

1984: Reagan proposes the ISS — without Russia

The space station was originally going to be a U.S. effort, but soon became a collaboration with Canada, Japan and Europe, excluding the then-USSR. American-Russian relations were strained then, as you may remember, and although many in the space industry itself would have preferred working together, the political climate did not permit it. Nevertheless, initial work began.

1993: Clinton adds Russia to the bill

The collapse of the Soviet Union and subsequent rejuvenation of international relations led President Bush to bring them into the program in a limited fashion, as a supplier and as a guest on a shuttle mission. The next year, however, President Clinton one-upped him with the announcement that Russia would be a full partner. This was both a practical and political decision: Russian involvement would save billions, but it also helped bring Russia on board with other issues, like ICBM de-proliferation efforts. At any rate, designs were finally beginning to be built.

1998: The first components, Zarya and Unity, launch to orbit

Endeavour approaches Zarya when the latter was the only component in place.

Though persona non grata at first, Russia had the privilege of launching the first core component of the ISS on November 20, 1998, the anniversary we are celebrating today. The Zarya Functional Cargo Block is still up there, still being used, forming the gateway to the Russian side of the station.

One month later, Space Shuttle Endeavour took off from Launch Complex 39A (we’ve been there) carrying Unity Node 1. This too is up there now, attached since that day to Zarya.

2000: The first of many long-term occupants arrive

From left: Shepherd, Gidzenko and Krikalev, aboard the station.

Almost exactly a year after Zarya went up, the first astronauts took up residence on the ISS — the first of 230 people so far to call the orbiting structure home. Bill Shepherd was NASA’s first representative, flying with cosmonauts Yuri Gidzenko and Sergei Krikalev; they would stay for about 141 days.

2003: Columbia disaster delays expansion

The fatal breakup of Space Shuttle Columbia on reentry following its 28th mission was tragedy enough that other shuttle missions were scrubbed for over two years. As these were the primary means of the U.S. adding to and maintaining the ISS, this responsibility passed to Roscosmos until shuttle launches resumed in 2005; crewed launches wouldn’t resume until mid-2006.

2007: Kibo goes up

Numerous modules have been added to the ISS over the years, but Japan’s Kibo is the largest. It took multiple missions to deliver all the pieces, and was only made possible by earlier missions that had expanded the solar power capacity of the station. Kibo contains a ton of reconfigurable space accessible from the pressurized interior, and has been popular for both private and public experiments that must be conducted in space.

2010: Enter the Cupola

If Kibo is the largest component, the Cupola is likely the most famous. The giant 7-window bubble looks like something out of science fiction (specifically, the front end of the Millennium Falcon) and is the location for the station’s most striking photography, both inside and out.

2014: Beautiful timelapses

With the Cupola in place, capturing imagery of the Earth from this amazing view became easier — especially with the increasingly high-quality digital cameras brought aboard by talented astronaut-photographers like Alexander Gerst and Don Pettit. The many, many photos taken out of this aperture have been formed into innumerable beautiful timelapses and desktop backgrounds, as well as witnessing incredible phenomena like aurora and lightning storms from a new and valuable perspective. It’s hard to pick just one, but Don Pettit’s “The World Outside My Window” above is a fabulous example, and Gerst’s 4K compilation is another.

2015: Gennady Padalka sets time in space record

During his fifth flight to space, Gennady Padalka set a world record for most time in space: When he returned to Earth he had logged a total of 878 days and change. That’s well ahead of the competition, which is almost exclusively Russian — though NASA’s Peggy Whitson is right up there with 666 days over three missions.

2016: Chinese station calling ISS, please pick up

It’s hardly crowded in space, but it can get lonely up there. So it’s nice that those who have the honor to fly reach out to each other. In this case China’s taikonaut Jing Haipeng recorded a heartwarming video message from the Chinese Tiangong-2 space station greeting the incoming ISS crew and praising the community of global cooperation that makes all this possible.

2018: Soyuz accident threatens long-term occupation

A crewed mission to the ISS with astronaut Nick Hague and cosmonaut Alexey Ovchinin encountered a serious fault during launch, fortunately resulting in no injuries or fatalities but shaking up the space community. The Soyuz rocket and capsule had more than proven themselves over the years but no risks could be taken with human life, and future missions were delayed. It was possible that for the first time since it was first entered, the ISS would be empty as its crew left with no replacements on the way.

Fortunately the investigation has concluded and a new mission is planned for early December, which will prevent such an historic absence.

2019? First commercial crew mission and beyond

Russia has borne sole responsibility for all crewed launches for years; the U.S. has been planning to separate itself from this dependence by fostering a new generation of crew-capable capsules that can meet and exceed the safety and reliability of the Soyuz system. SpaceX and Boeing both plan 2019 flights for their respective Crew Dragon and Starliner capsules — though slipping dates and new regulatory attention may delay those further.

The ISS has a bright future despite its remarkable 20 years of continuous operation. It’s funded more or less through 2025, but there’s talk of new space stations from Russia and China both, while the U.S. eyes lunar orbit for its next big endeavor. It’s hard to imagine space now without an ISS full of people in it, however, and falling launch costs may mean that its life can be extended even further and for less cost. Here’s hoping the ISS has another two decades in front of it.

Powered by WPeMatico

FCC approval of Europe’s Galileo satellite signals may give your phone’s GPS a boost

Posted by | FCC, Gadgets, galileo, Government, gps, Mobile, Satellites, Space | No Comments

The FCC’s space-focused meeting today had actions taken on SpaceX satellites and orbital debris reduction, but the decision most likely to affect users has to do with Galileo . No, not the astronomer — the global positioning satellite constellation put in place by the E.U. over the last few years. It’s now legal for U.S. phones to use, and a simple software update could soon give your GPS signal a major bump.

Galileo is one of several successors to the Global Positioning System that’s been in use since the ’90s. But because it is U.S.-managed and was for a long time artificially limited in accuracy to everyone but U.S. military, it should come as no surprise that European, Russian and Chinese authorities would want their own solutions. Russia’s GLONASS is operational and China is hard at work getting its BeiDou system online.

The E.U.’s answer to GPS was Galileo, and the 26 (out of 30 planned) satellites making up the constellation offer improved accuracy and other services, such as altitude positioning. Test satellites went up as early as 2005, but it wasn’t until 2016 that it began actually offering location services.

A Galileo satellite launch earlier this year.

Devices already existed that would take advantage of Galileo signals — all the way back to the iPhone 6s, the Samsung Galaxy S7 and many others from that era forward. It just depends on the wireless chip inside the phone or navigation unit, and it’s pretty much standard now. (There’s a partial list of smartphones supporting Galileo here.)

When a company sells a new phone, it’s much easier to just make a couple million of the same thing rather than make tiny changes like using a wireless chipset in U.S. models that doesn’t support Galileo. The trade-off in savings versus complexity of manufacturing and distribution just isn’t worthwhile.

The thing is, American phones couldn’t use Galileo because the FCC has regulations against having ground stations being in contact with foreign satellites. Which is exactly what using Galileo positioning is, though of course it’s nothing sinister.

If you’re in the U.S., then, your phone likely has the capability to use Galileo but it has been disabled in software. The FCC decision today lets device makers change that, and the result could be much-improved location services. (One band not very compatible with existing U.S. navigation services has been held back, but two of the three are now available.)

Interestingly enough, however, your phone may already be using Galileo without your or the FCC’s knowledge. Because the capability is behind a software lock, it’s possible that a user could install an app or service bringing it into use. Perhaps you travel to Europe a lot and use a French app store and navigation app designed to work with Galileo and it unlocked the bands. There’d be nothing wrong with that.

Or perhaps you installed a custom ROM that included the ability to check the Galileo signal. That’s technically illegal, but the thing is there’s basically no way for anyone to tell! The way these systems work, all you’d be doing is receiving a signal illegally that your phone already supports and that’s already hitting its antennas every second — so who’s going to report you?

It’s unlikely that phone makers have secretly enabled the Galileo frequencies on U.S. models, but as Commissioner Jessica Rosenworcel pointed out in a statement accompanying the FCC action, that doesn’t mean it isn’t happening:

If you read the record in this proceeding and others like it, it becomes clear that many devices in the United States are already operating with foreign signals. But nowhere in our record is there a good picture of how many devices in this country are interacting with these foreign satellite systems, what it means for compliance with our rules, and what it means for the security of our systems. We should change that. Technology has gotten ahead of our approval policies and it’s time for a true-up.

She isn’t suggesting a crackdown — this is about regulation lagging behind consumer tech. Still, it is a little worrying that the FCC basically has no idea, and no way to find out, how many devices are illicitly tuning in to Galileo signals.

Expect an update to roll out to your phone sometime soon — Galileo signals will be of serious benefit to any location-based app, and to public services like 911, which are now officially allowed to use the more accurate service to determine location.

Powered by WPeMatico

SpaceX’s Starlink aims to put over a thousand of its communications satellites in super-low orbit

Posted by | Gadgets, hardware, Satellites, Space, SpaceX, starlink | No Comments

SpaceX’s planned communication satellite constellation, known as Starlink, will now be targeting a much lower orbit than originally planned, at least for over a thousand of the satellites, the company revealed in an FCC filing. The move should help mitigate orbital debris and provide better signal for the company’s terrestrial users as well.

Starlink plans to put 1,584 satellites — about a third of the 4,409 the company aims to launch — in an orbit just 550 kilometers about the surface of the Earth. For comparison, many communications satellites are in orbits more than twice as high, and geosynchronous orbits are more than 20 times farther out (around 36,000 miles).

At that distance orbits decay quickly, falling into the atmosphere and burning up after a handful of years. But SpaceX isn’t daunted; in fact, it writes in its application, lower orbits offer “several attractive features both during nominal operation and in the unlikely event something goes wrong.”

In the first place, orbital debris problems are naturally mitigated by the fact that anything in that low orbit will fall to Earth quickly instead of cluttering up the orbit. Second, it should shorten the amount of time it takes to send and receive a signal from the satellites — ping time could be as low as 15 milliseconds, the company estimated. And 500 fewer kilometers means there will be less spreading for beam-based communications, as well.

The satellites will have to do more work to stay at their optimal altitude, as atmospheric drag will be higher, and each one will be able to see and serve less of the planet. But with thousands working together, that should be manageable.

The decision was informed by experimental data from the “Tintin” test satellites the company launched earlier this year. “SpaceX has learned to mitigate the disadvantages of operating at a lower altitude and still reap the well-known and significant benefits discussed above,” it wrote.

This change could lead to competitive advantages when satellite communications are more widely used, but it will also likely lead to a more intensive upkeep operation as Starlink birds keep dropping out of the air. Fortunately a third benefit of the lower orbit is that it’s easier to reach, though probably not so much easier that the company breaks even.

Starlink is aiming for the first real launches of its systems early next year, though that timeline may be a little too ambitious. But SpaceX can do ambitious.

Powered by WPeMatico

The space pen became the space pen 50 years ago

Posted by | fisher space pen, Gadgets, NASA, Space | No Comments

Everyone knows about the space pen. NASA spent millions on R&D to create the ultimate pen that would work in zero gravity and the result was this incredible machine. Well, no. In fact it was made by a pen manufacturer in 1966 — but it wasn’t until October of 1968 that it went into orbit and fulfilled its space pen destiny.

The pen was created by pen maker (naturally) Paul Fisher, who used $1 million of his own money to create the AG-7 anti-gravity pen. As you may or may not know, the innovation was a pressurized ink cartridge and gel ink that would deploy reliably regardless of orientation, temperature or indeed the presence of gravity.

He sent it to NASA, which was of course the only organization reliably worried about making things work in microgravity, and they loved it. In fact, the Russians started using it shortly afterwards, as well.

Walt Cunningham, Wally Schirra and Donn Eisele took the pens aboard with them for the Apollo 7 mission, which launched on October 11, 1968, and they served them well over the next 11 days in orbit.

A 50th anniversary edition of the pen is now available to people who have a lot of money and love gold stuff. It’s $500, a limited edition of 500, and made of “gold titanium nitride plated brass,” and it comes with a case and commemorative plaque with a quote from Cunningham:

“Fifty years ago, I flew with the first flown Space Pen on Apollo 7. I relied on it then, and it’s still the only pen I rely on here on Earth.”

Okay, that’s pretty cool. Presumably astronauts get a lifetime supply of these things, though.

Here’s to the Fisher space pen, an example of American ingenuity and simple, reliable good design that’s persisted in use and pop culture for half a century.

Powered by WPeMatico

Mars Rover Curiosity is switching brains so it can fix itself

Posted by | Gadgets, jpl, mars rover, NASA, robotics, science, Space, TC | No Comments

When you send something to space, it’s good to have redundancy. Sometimes you want to send two whole duplicate spacecraft just in case — as was the case with Voyager — but sometimes it’s good enough to have two of critical components. Mars Rover Curiosity is no exception, and it is now in the process of switching from one main “brain” to the other so it can do digital surgery on the first.

Curiosity landed on Mars with two central computing systems, Side-A and Side-B (not left brain and right brain — that would invite too much silliness). They’re perfect duplicates of each other, or were — it was something of a bumpy ride, after all, and cosmic radiation may flip a bit here and there.

The team was thankful to have made these preparations when, on sol 200 in February of 2013 (we’re almost to sol 2,200 now), the Side-A computer experienced a glitch that ended up taking the whole rover offline. The solution was to swap over to Side-B, which was up and running shortly afterwards and sending diagnostic data for its twin.

Having run for several years with no issues, Side-B is now, however, having its own problems. Since September 15 it has been unable to record mission data, and it doesn’t appear to be a problem that the computer can solve itself. Fortunately, in the intervening period, Side-A has been fixed up to working condition — though it has a bit less memory than it used to, since some corrupted sectors had to be quarantined.

“We spent the last week checking out Side A and preparing it for the swap,” said Steven Lee, deputy project manager of the Curiosity program at JPL, in a mission status report. “We are operating on Side A starting today, but it could take us time to fully understand the root cause of the issue and devise workarounds for the memory on Side B. It’s certainly possible to run the mission on the Side-A computer if we really need to. But our plan is to switch back to Side B as soon as we can fix the problem to utilize its larger memory size.”

No timeline just yet for how that will happen, but the team is confident that they’ll have things back on track soon. The mission isn’t in jeopardy — but this is a good example of how a good system of redundancies can add years to the life of space hardware.

Powered by WPeMatico

NASA’s Parker Solar Probe launches tonight to ‘touch the sun’

Posted by | artificial intelligence, Gadgets, Government, hardware, NASA, parker solar probe, science, Space, TC | No Comments

NASA’s ambitious mission to go closer to the Sun than ever before is set to launch in the small hours between Friday and Saturday — at 3:33 AM Eastern from Kennedy Space Center in Florida, to be precise. The Parker Solar Probe, after a handful of gravity assists and preliminary orbits, will enter a stable orbit around the enormous nuclear fireball that gives us all life and sample its radiation from less than 4 million miles away. Believe me, you don’t want to get much closer than that.

If you’re up late tonight (technically tomorrow morning), you can watch the launch live on NASA’s stream.

This is the first mission named after a living researcher, in this case Eugene Parker, who in the ’50s made a number of proposals and theories about the way that stars give off energy. He’s the guy who gave us solar wind, and his research was hugely influential in the study of the sun and other stars — but it’s only now that some of his hypotheses can be tested directly. (Parker himself visited the craft during its construction, and will be at the launch. No doubt he is immensely proud and excited about this whole situation.)

“Directly” means going as close to the sun as technology allows — which leads us to the PSP’s first major innovation: its heat shield, or thermal protection system.

There’s one good thing to be said for the heat near the sun: it’s a dry heat. Because there’s no water vapor or gases in space to heat up, find some shade and you’ll be quite comfortable. So the probe is essentially carrying the most heavy-duty parasol ever created.

It’s a sort of carbon sandwich, with superheated carbon composite on the outside and a carbon foam core. All together it’s less than a foot thick, but it reduces the temperature the probe’s instruments are subjected to from 2,500 degrees Fahrenheit to 85 — actually cooler than it is in much of the U.S. right now.

Go on – it’s quite cool.

The car-sized Parker will orbit the sun and constantly rotate itself so the heat shield is facing inward and blocking the brunt of the solar radiation. The instruments mostly sit behind it in a big insulated bundle.

And such instruments! There are three major experiments or instrument sets on the probe.

WISPR (Wide-Field Imager for Parker Solar Probe) is a pair of wide-field telescopes that will watch and image the structure of the corona and solar wind. This is the kind of observation we’ve made before — but never from up close. We generally are seeing these phenomena from the neighborhood of the Earth, nearly 100 million miles away. You can imagine that cutting out 90 million miles of cosmic dust, interfering radiation and other nuisances will produce an amazingly clear picture.

SWEAP (Solar Wind Electrons Alphas and Protons investigation) looks out to the side of the craft to watch the flows of electrons as they are affected by solar wind and other factors. And on the front is the Solar Probe Cup (I suspect this is a reference to the Ray Bradbury story, “Golden Apples of the Sun”), which is exposed to the full strength of the sun’s radiation; a tiny opening allows charged particles in, and by tracking how they pass through a series of charged windows, they can sort them by type and energy.

FIELDS is another that gets the full heat of the sun. Its antennas are the ones sticking out from the sides — they need to in order to directly sample the electric field surrounding the craft. A set of “fluxgate magnetometers,” clearly a made-up name, measure the magnetic field at an incredibly high rate: two million samples per second.

They’re all powered by solar panels, which seems obvious, but actually it’s a difficult proposition to keep the panels from overloading that close to the sun. They hide behind the shield and just peek out at an oblique angle, so only a fraction of the radiation hits them.

Even then, they’ll get so hot that the team needed to implement the first-ever active water cooling system on a spacecraft. Water is pumped through the cells and back behind the shield, where it is cooled by, well, space.

The probe’s mission profile is a complicated one. After escaping the clutches of the Earth, it will swing by Venus, not to get a gravity boost, but “almost like doing a little handbrake turn,” as one official described it. It slows it down and sends it closer to the sun — and it’ll do that seven more times, each time bringing it closer and closer to the sun’s surface, ultimately arriving in a stable orbit 3.83 million miles above the surface — that’s 95 percent of the way from the Earth to the sun.

On the way it will hit a top speed of 430,000 miles per hour, which will make it the fastest spacecraft ever launched.

Parker will make 24 total passes through the corona, and during these times communication with Earth may be interrupted or impractical. If a solar cell is overheating, do you want to wait 20 minutes for a decision from NASA on whether to pull it back? No. This close to the sun even a slight miscalculation results in the reduction of the probe to a cinder, so the team has imbued it with more than the usual autonomy.

It’s covered in sensors in addition to its instruments, and an onboard AI will be empowered to make decisions to rectify anomalies. That sounds worryingly like a HAL 9000 situation, but there are no humans on board to kill, so it’s probably okay.

The mission is scheduled to last seven years, after which time the fuel used to correct the craft’s orbit and orientation is expected to run out. At that point it will continue as long as it can before drift causes it to break apart and, one rather hopes, become part of the sun’s corona itself.

The Parker Solar Probe is scheduled for launch early Saturday morning, and we’ll update this post when it takes off successfully or, as is possible, is delayed until a later date in the launch window.

Powered by WPeMatico