Space

David Copperfield’s secret magic techniques crash-landed on the Moon

Posted by | beresheet, Gadgets, Israel, Space, spaceIL, TC | No Comments

The loss of Israel’s Beresheet lander during its descent to the lunar surface was unfortunate, but the mission was still largely a success — and has certainly created an interesting cultural artifact on the Moon where it impacted. Perhaps more interesting than we could have known: It turns out David Copperfield stashed the secrets to his illusions onboard, and they may have survived the crash.

The data was kept on one of the Arch Mission Foundation’s tiny, high-capacity, high-endurance archival devices, meant to act as libraries or time capsules in a variety of sci-fi-sounding scenarios, like extraterrestrial visits or the near-extinction of humans. They’re “nearly indestructible,” and one was on Beresheet.

In a plot twist no one could have seen coming, among the data encoded on the DVD-sized (but much more sophisticated) storage medium are the famous magician’s “secret technological innovations.” Yes, David Copperfield shot his tricks to the Moon, and no, it doesn’t sound like it’s just some old ones or previously published information (I asked).

Why?

“When I was introduced to the Arch Mission Foundation, I was immediately enamored with the mission to preserve our civilization, and the possibilities of what we might do together,” Copperfield said in a press release. “One of my heroes is George Méliès, one of the fathers of modern cinema and also a great magician. His most famous movie was ‘A Trip to the Moon,’ which in 1902 visualized people landing on the Moon. It inspired a generation of scientists to actually achieve it, and 70 years later we actually landed on the Moon. Now 50 years later, we’re landing magic on the Moon. We’re bringing it full circle and I find that kind of poetic.”

There you have it. Quite absurd, but why not?

As for the device, AMF has put together a small team (including Stephen Wolfram) to look into what may have happened to it on impact.

“We have either installed the first library on the moon, or we have installed the first archaeological ruins of early human attempts to build a library on the moon,” read a preliminary document by the team containing various figures relating the crash and potential survival of the device.

Although AMF co-founder Nova Spivack said in the press release that “every indication thus far suggests that the Lunar Library is intact on the Moon,” the truth is there aren’t that many positive indications just yet.

Mission control lost contact with Beresheet when it was only 150 meters from the surface; it would have impacted about a second later with about 956 m/s of horizontal velocity, which translates to more than 2,000 miles per hour. So this thing was going faster than a bullet and was considerably less durable. The wreckage is likely strewn over kilometers of the lunar surface.

“We think it is highly unlikely that the Lunar Library was atomized in the impact,” writes the team. “Without knowing the impact energy directed at the library, it’s hard to know how the stack fared. But taking the construction of the Lunar Library into account, we believe it has a high chance of being intact.”

It isn’t just an archival-quality disc or something. It’s a special 25-layer sandwich of nickel and epoxy, the bottom 21 layers of which are filled with digital data. This is the information most at risk, since, like snapping a DVD in half, you can’t just put the pieces back together and hope the 0s and 1s align again.

But the top four layers are essentially a form of high-durability microfiche, etched with tiny letters that could be read with a basic microscope. These you really could just piece back together. The 60,000 pages of analog data include “the Arch Mission Primer, selections from Wikipedia, The Wearable Rosetta, The Israeli Time Capsule, a selection of books — and potentially all or some of the not-yet-announced secret Vaults of content.”

Among those “not-yet-announced secret Vaults” in the analog layers is in fact the collection of Copperfield’s illusions. Lucky, that!

Unfortunately, even if the device does theoretically survive, it may never be found: at those speeds the debris from the landing would have spread over a large area and perhaps buried itself in dust and regolith. So even if it were completely intact, it might be invisible even to the high-resolution cameras on the Lunar Reconnaissance Orbiter, which AMF has requested to take a few images of the crash site (it was probably already going to, given the interest in the Beresheet mission).

“We think it is highly unlikely that the Lunar Library was atomized in the impact, given what we currently know. Therefore either the Lunar library remains entirely intact or it remains in a partially intact state — somewhere within a few kilometers of the landing zone,” writes the team. However, “This may not be verifiable without investigating the scene firsthand, on the ground at the crash site.”

So a trip to the Moon, Méliès-style, might be necessary after all.

The idea of a treasure hunt for a famous magician’s secrets in a Moon landing gone wrong really sounds more like science fiction than everyday news, but the two things have been growing closer and closer to one another for a while now, so I guess none of us should be surprised.

Powered by WPeMatico

Israel’s Beresheet spacecraft is lost during historic lunar landing attempt

Posted by | beresheet, Gadgets, Israel, lunar landing, science, Space, SpaceX | No Comments

Israel’s SpaceIL almost made history today as its Beresheet spacecraft came within an ace of landing on the surface of the Moon, but suffered a last-minute failure during descent. Israel missed out on the chance to be the fourth country to make a controlled lunar landing, but getting 99 percent of the way there is still an extraordinary achievement for private spaceflight.

Beresheet (“Genesis”) launched in February as secondary payload aboard a SpaceX Falcon 9 rocket, and after a month and a half spiraling outward, entered lunar orbit a week ago. Today’s final maneuver was an engine burn meant to bring down its relative velocity to the Moon, then brake to a soft landing in the Mare Serenitatis, or Sea of Serenity.

Everything was working fine up until the final moments, as is often the case in space. The craft, having made it perfectly to its intended point of descent, determined that all systems were ready and the landing process would go ahead as planned.

They lost telemetry for a bit, and had to reset the craft to get the main engine back online… and then communication dropped while only a handful of kilometers from the surface. The “selfie” image above was taken from 22 km above the surface, just a few minutes before that. The spacecraft was announced as lost shortly afterwards.

Clearly disappointed but also exhilarated, the team quickly recovered its composure, saying “the achievement of getting to where we got is tremendous and we can be proud,” and of course, “if at first you don’t succeed… try, try again.”

The project began as an attempt to claim the Google Lunar Xprize, announced more than a decade ago, but which proved too difficult for teams to attempt in the time frame specified. Although the challenge and its prize money lapsed, Israel’s SpaceIL team continued its work, bolstered by the support of Israel Aerospace Industries, the state-owned aviation concern there.

It’s worth noting that although Beresheet did enjoy considerable government support in this way, it’s a far cry from any other large-scale government-run mission, and can safely be considered “private” for all intents and purposes. The ~50-person team and $200 million budget are laughably small compared to practically any serious mission, let alone a lunar landing.

I spoke with Xprize’s founder and CEO, Peter Diamandis and Anousheh Ansari, respectively, just before the landing attempt. Both were extremely excited and made it clear that the mission was already considered a huge success.

“What I’m seeing here is an incredible ‘Who’s Who’ from science, education and government who have gathered to watch this miracle take place,” Diamandis said. “We launched this competition now 11 years ago to inspire and educate engineers, and despite the fact that it ran out of time it has achieved 100 percent of its goal. Even if it doesn’t make it onto the ground fully intact it has ignited a level of electricity and excitement that reminds me of the Ansari Xprize 15 years ago.”

He’s not the only one. Ansari, who funded the famous spaceflight Xprize that bore her name, and who has herself visited space as one of the first tourist-astronauts above the International Space Station, felt a similar vibe.

“It’s an amazing moment, bringing so many great memories up,” she told me. “It reminds me of when we were all out in the Mojave waiting for the launch of Spaceship One.”

Ansari emphasized the feeling the landing evoked of moving forward as a people.

“Imagine, over the last 50 years only 500 people out of seven billion have been to space — that number will be thousands soon,” she said. “We believe there’s so much more that can be done in this area of technology, a lot of real business opportunities that benefit civilization but also humanity.”

Congratulations to the SpaceIL team for their achievement, and here’s hoping the next attempt makes it all the way down.

Powered by WPeMatico

Mars helicopter bound for the Red Planet takes to the air for the first time

Posted by | drones, Gadgets, Government, hardware, jpl, mars 2020, NASA, robotics, science, Space, TC, UAVs | No Comments

The Mars 2020 mission is on track for launch next year, and nesting inside the high-tech new rover heading that direction is a high-tech helicopter designed to fly in the planet’s nearly non-existent atmosphere. The actual aircraft that will fly on the Martian surface just took its first flight and its engineers are over the moon.

“The next time we fly, we fly on Mars,” said MiMi Aung, who manages the project at JPL, in a news release. An engineering model that was very close to final has over an hour of time in the air, but these two brief test flights were the first and last time the tiny craft will take flight until it does so on the distant planet (not counting its “flight” during launch).

“Watching our helicopter go through its paces in the chamber, I couldn’t help but think about the historic vehicles that have been in there in the past,” she continued. “The chamber hosted missions from the Ranger Moon probes to the Voyagers to Cassini, and every Mars rover ever flown. To see our helicopter in there reminded me we are on our way to making a little chunk of space history as well.”

Artist’s impression of how the helicopter will look when it’s flying on Mars

A helicopter flying on Mars is much like a helicopter flying on Earth, except of course for the slight differences that the other planet has a third less gravity and 99 percent less air. It’s more like flying at 100,000 feet, Aung suggested.

It has its own solar panel so it can explore more or less on its own

The test rig they set up not only produces a near-vacuum, replacing the air with a thin, Mars-esque CO2 mix, but a “gravity offload” system simulates lower gravity by giving the helicopter a slight lift via a cable.

It flew at a whopping two inches of altitude for a total of a minute in two tests, which was enough to show the team that the craft (with all its 1,500 parts and four pounds) was ready to package up and send to the Red Planet.

“It was a heck of a first flight,” said tester Teddy Tzanetos. “The gravity offload system performed perfectly, just like our helicopter. We only required a 2-inch hover to obtain all the data sets needed to confirm that our Mars helicopter flies autonomously as designed in a thin Mars-like atmosphere; there was no need to go higher.”

A few months after the Mars 2020 rover has landed, the helicopter will detach and do a few test flights of up to 90 seconds. Those will be the first heavier-than-air flights on another planet — powered flight, in other words, rather than, say, a balloon filled with gaseous hydrogen.

The craft will operate mostly autonomously, since the half-hour round trip for commands would be far too long for an Earth-based pilot to operate it. It has its own solar cells and batteries, plus little landing feet, and will attempt flights of increasing distance from the rover over a 30-day period. It should go about three meters in the air and may eventually get hundreds of meters away from its partner.

Mars 2020 is estimated to be ready to launch next summer, arriving at its destination early in 2021. Of course, in the meantime, we’ve still got Curiosity and Insight up there, so if you want the latest from Mars, you’ve got plenty of options to choose from.

Powered by WPeMatico

Opportunity’s last Mars panorama is a showstopper

Posted by | Gadgets, Government, hardware, jpl, mars, mars rover, mars rovers, NASA, Opportunity, science, Space, TC | No Comments

The Opportunity Mars Rover may be officially offline for good, but its legacy of science and imagery is ongoing — and NASA just shared the last (nearly) complete panorama the robot sent back before it was blanketed in dust.

After more than 5,000 days (or rather sols) on the Martian surface, Opportunity found itself in Endeavour Crater, specifically in Perseverance Valley on the western rim. For the last month of its active life, it systematically imaged its surroundings to create another of its many impressive panoramas.

Using the Pancam, which shoots sequentially through blue, green and deep red (near-infrared) filters, it snapped 354 images of the area, capturing a broad variety of terrain as well as bits of itself and its tracks into the valley. You can click the image below for the full annotated version.

It’s as perfect and diverse an example of the Martian landscape as one could hope for, and the false-color image (the flatter true-color version is here) has a special otherworldly beauty to it, which is only added to by the poignancy of this being the rover’s last shot. In fact, it didn’t even finish — a monochrome region in the lower left shows where it needed to add color next.

This isn’t technically the last image the rover sent, though. As the fatal dust storm closed in, Opportunity sent one last thumbnail for an image that never went out: its last glimpse of the sun.

After this the dust cloud so completely covered the sun that Opportunity was enveloped in pitch darkness, as its true last transmission showed:

All the sparkles and dots are just noise from the image sensor. It would have been complete dark — and for weeks on end, considering the planetary scale of the storm.

Opportunity had a hell of a good run, lasting and traveling many times what it was expected to and exceeding even the wildest hopes of the team. That right up until its final day it was capturing beautiful and valuable data is testament to the robustness and care with which it was engineered.

Powered by WPeMatico

SpaceX makes history by completing first private crew capsule mission

Posted by | commercial crew, Gadgets, Government, hardware, international space station, ISS, NASA, Space, SpaceX | No Comments

SpaceX’s Crew Dragon capsule has safely splashed down in the Atlantic, making it the first privately built crew-capable spacecraft ever to complete a mission to the International Space Station. It’s one of several firsts SpaceX plans this year, but Boeing is hot on its heels with a crew demonstrator of its own — and of course the real test is doing the same thing with astronauts aboard.

This mission, Demo-1, had SpaceX showing that its Crew Dragon capsule, an evolution of the cargo-bearing Dragon that has made numerous ISS deliveries, was complete and ready to take on its eponymous crew.

It took off early in the morning of March 2 (still March 1 on the West coast), circled the Earth 18 times, and eventually came to a stop (relatively speaking, of course) adjacent to the ISS, after which it approached and docked with the new International Docking Adapter. The 400 pounds of supplies were emptied, but the “anthropomorphic test device” known as Ripley — basically a space crash test dummy — stayed in her seat on board.

(It’s also worth noting that the Falcon 9 first stage that took the capsule to the edge of the atmosphere landed autonomously on a drone ship.)

Five days later — very early this morning — the craft disengaged from the ISS and began the process of deorbiting. It landed on schedule at about 8:45 in the morning Eastern time.

It’s a huge validation of NASA’s Commercial Crew Program, and of course a triumph for SpaceX, which not only made and launched a functioning crew spacecraft, but did so before its rival Boeing. That said, it isn’t winner take all — the two spacecraft could very well exist in healthy competition as crewed missions to space become more and more common.

Expect to see a report on the mission soon after SpaceX and NASA have had time to debrief and examine the craft (and Ripley).

Powered by WPeMatico

SpaceX’s Crew Dragon makes its first orbital launch tonight

Posted by | commercial crew, crew dragon, Gadgets, Government, hardware, NASA, Space, SpaceX | No Comments

After years of development and delays, SpaceX’s Crew Dragon is ready to launch into orbit. It’s the first commercially built and operated crewed spacecraft ever to do so, and represents in many ways the public-private partnership that could define the future of spaceflight.

Launch is set for just before midnight Pacific time — 2:49 Eastern time in Cape Canaveral, from where the Falcon 9 carrying the Crew Dragon capsule will take off. It’s using Launchpad 39A at Kennedy Space Center, which previously hosted Apollo missions and more recently SpaceX’s momentous Falcon Heavy launch. Feel free to relive that moment with us, while you’re here:

The capsule has been the work of many years and billions of dollars: an adaptation of the company’s Dragon capsule, but with much of its cargo space converted to a spacious crew compartment. It can seat seven if necessary, but given the actual needs of the International Space Station, it is more likely to carry two or three people and a load of supplies.

Of course it had to meet extremely stringent safety requirements, with an emergency escape system, redundant thrusters and parachutes, newly designed spacesuits, more intuitive and modern control methods and so on.

Crew Dragon interior, with “Ripley”

It’s a huge technological jump over the Russian Soyuz capsule that has been the only method to get humans to space for the last eight years, since the Shuttle program was grounded for good. But one thing Dragon doesn’t have is the Soyuz’s exemplary flight record. The latter may look like an aircraft cockpit shrunk down to induce claustrophobia, but it has proven itself over and over for decades. The shock produced by a recent aborted launch and the quickness with which the Soyuz resumed service are testament to the confidence it has engendered in its users.

But for a number of reasons the U.S. can’t stay beholden to Russia for access to space, and at any rate the commercial spaceflight companies were going to send people up there anyway. So NASA dedicated a major portion of its budget to funding a new crew capsule, pitting SpaceX and Boeing against one another.

SpaceX has had the best of Boeing for the most part, progressing through numerous tests and milestones, not exactly quickly, but with fewer delays than its competitor. Test flights originally scheduled for 2016 are only just now beginning to take place. Boeing’s Starliner doesn’t have a launch date yet, but it’s expected to be this summer.

Tonight’s test (“Demo-1”) is the first time the Crew Dragon will fly to space; suborbital flights and landing tests have already taken place, but this is a dry run of the real thing. Well, not completely dry: the capsule is carrying 400 pounds of supplies to the station and will return with some science experiments on board.

After launch, it should take about 11 minutes for the capsule to detach from the first and second stages of the Falcon 9 rocket. It docks about 27 hours later, early Sunday morning, and the crew will be able to get at the goodies just in time for brunch, if for some reason they’re operating on East Coast time.

SpaceX will be live streaming the launch as usual starting shortly before takeoff; you can watch it right here:

Powered by WPeMatico

OneWeb’s first six global internet satellites are safely in orbit

Posted by | Gadgets, hardware, OneWeb, SATCOM, satellite, Satellites, Softbank, Space | No Comments

Update: Launch and deployment successful!

After four years and more than $2 billion in funding, OneWeb is ready to launch the first six satellites out of a planned constellation of 650 with which it plans to blanket the world in broadband. The Arianespace-operated Soyuz rocket will take off at 1:37 Pacific time from Guiana Space Center. You can watch it live at OneWeb’s site here.

OneWeb is one of several companies that aims to connect the world with a few hundred or thousand satellites, and certainly the most well-funded — SoftBank is the biggest investor, but Virgin Group, Coca-Cola, Bharti Group, Qualcomm and Airbus have all chipped in.

The company’s plan is to launch a total of 900 (650 at first) satellites to about a 1,100-kilometer low Earth orbit, from which it says it will be able to provide broadband to practically anywhere on Earth — anywhere you can put a base station, anyway. Much cheaper and better than existing satellite connectivity, which is expensive and slow.

Sound familiar? Of course, SpaceX’s side project, Starlink, has similar ambitions, with an even greater number of satellites planned, and Swarm is aiming for a smaller constellation of smaller satellites for low-cost access. And Ubiquitilink just announced this week that its unique technology will remove the need for base stations and beam satellite connections directly to ordinary phones. And they’ve all launched satellites already!

The launch vehicle fueling today at GSC.

OneWeb has faced numerous delays; the whole constellation was originally planned to be in place by the end of 2019, which is impossible at this point. But delays are the name of the game in ambitious space-based businesses, and OneWeb hasn’t been just procrastinating — it has been girding itself for mass production, raising funds to set up launch contracts and improving the satellites themselves. Its updated schedule, as it states in the mission summary: “OneWeb will begin customer demos in 2020 and provide global, 24-hour coverage to customers in 2021.”

At a reported cost of about a million dollars per satellite — twice the projected cost in 2015 — just building and testing the constellation will likely rub up against a billion dollars, and that’s not counting launch costs. But no one ever said it would be cheap. In fact, they probably said it would be unbelievably expensive. That’s why SoftBank and the other investors are “committing to a lot more capital,” as CEO Adrián Steckel told the Financial times last month.

The company also announced its first big deal with a telecom; Talia, which provides connectivity in Africa and the Middle East, signed on to use OneWeb’s services starting in 2021.

Soyuz launches could carry more than 30 of these satellites each, meaning it would take at least 20 to put the whole constellation in orbit. This first launch, however, only has six aboard; the other spots on board the mass launch system have dummy payloads to simulate how it should be going forward.

A OneWeb representative told me that this launch is meant to “verify the satellite design and validate the end to end system,” which is probably a good idea before sending up 600 more. That means OneWeb will be testing and tracking these six birds for the next few months and making sure the connection with ground stations and other aspects of the whole system are functioning properly.

Full payloads will start in the fall, after OneWeb opens its (much-delayed) production facility just outside Kennedy Space Center in Florida.

You can watch the launch at OneWeb’s site here.

Powered by WPeMatico

Ubiquitilink advance means every phone is now a satellite phone

Posted by | Gadgets, hardware, Mobile, science, Space, Startups, TC, ubiquitilink | No Comments

Last month I wrote about Ubiquitilink, which promised, through undisclosed means, it was on the verge of providing a sort of global satellite-based roaming service. But how, I asked? (Wait, they told me.) Turns out our phones are capable of a lot more than we think: they can reach satellites acting as cell towers in orbit just fine, and the company just proved it.

Utilizing a constellation of satellites in low Earth orbit, Ubiquitilink claimed during a briefing at Mobile World Congress in Barcelona that pretty much any phone from the last decade should be able to text and do other low-bandwidth tasks from anywhere, even in the middle of the ocean or deep in the Himalayas. Literally (though eventually) anywhere and any time.

Surely not, I hear you saying. My phone, that can barely get a signal on some blocks of my neighborhood, or in that one corner of the living room, can’t possibly send and receive data from space… can it?

“That’s the great thing — everybody’s instinct indicates that’s the case,” said Ubiquitilink founder Charles Miller. “But if you look at the fundamentals of the RF [radio frequency] link, it’s easier than you think.”

The issue, he explained, isn’t really that the phone lacks power. The limits of reception and wireless networks are defined much more by architecture and geology than plain physics. When an RF transmitter, even a small one, has a clear shot straight up, it can travel very far indeed.

Space towers

It’s not quite as easy as that, however; there are changes that need to be made, just not anything complex or expensive like special satellite antennas or base stations. If you know that modifying the phone is a non-starter, you have to work with the hardware you’ve got. But everything else can be shaped accordingly, Miller said — three things in particular.

  1. Lower the orbit. There are limits to what’s practical as far as the distance involved and the complications it brings. The orbit needs to be under 500 kilometers, or about 310 miles. That’s definitely low — geosynchronous is 10 times higher — but it’s not crazy either. Some of SpaceX’s Starlink communications satellites are aiming for a similar orbit.
  2. Narrow the beam. The low orbit and other limitations mean that a given satellite can only cover a small area at a time. This isn’t just blasting out data like a GPS satellite, or communicating with a specialized ground system like a dish that can reorient itself. So on the ground you’ll be looking at a 45 degree arc, meaning you can use a satellite that’s within a 45-degree-wide cone above you.
  3. Lengthen the wavelength. Here simple physics come into play: generally, the shorter the wavelength, the less transparent the atmosphere is to it. So you want to use bands on the long (lower Hz) side of the radio spectrum to make sure you maximize propagation.

Having adjusted for these things, an ordinary phone can contact and trade information with a satellite with its standard wireless chip and power budget. But there’s one more obstacle, one Ubiquitilink spent a great deal of time figuring out.

Although a phone and satellite can reach one another reliably, a delay and Doppler shift in the signal due to the speeds and distances involved are inescapable. Turns out the software that runs towers and wireless chips isn’t suited for this; the timings built into the code assume the distance will be less than 30 km, since the curvature of the Earth generally prevents transmitting farther than that.

So Ubiquitilink modified the standard wireless stacks to account for this, something Miller said no one else had done.

“After my guys came back and told me they’d done this, I said, ‘well let’s go validate it,’ ” he told me. “We went to NASA and JPL and asked what they thought. Everybody’s gut reaction was ‘well, this won’t work,’ but then afterwards they just said ‘well, it works.’ ”

The theory became a reality earlier this year after Ubiquitilink launched their prototype satellites. They successfully made a two-way 2G connection between an ordinary ground device and the satellite, proving that the signal not only gets there and back, but that its Doppler and delay distortions can be rectified on the fly.

“Our first tests demonstrated that we offset the Doppler shift and time delay. Everything else is leveraging commercial software,” Miller said, though he quickly added: “To be clear, there’s plenty more work to be done, but it isn’t anything that’s new technology. It’s good solid hardcore engineering, building nanosats and that sort of thing.”

Since his previous company was Nanoracks and he’s been in the business for decades, he’s qualified to be confident on this part. It’ll be a lot of work and a lot of money, but they should be launching their first real satellites this summer. (And it’s all patented, he noted.)

Global roaming

The way the business will work is remarkably simple given the complexity of the product. Because the satellites operate on modified but mostly ordinary off-the-shelf software and connect to phones with no modifications necessary, Ubiquitilink will essentially work as a worldwide roaming operator that mobile networks will pay to access. (Disclosure: Verizon, obviously a mobile network, owns TechCrunch, and for all I know will use this tech eventually. It’s not involved with any editorial decisions.)

Normally, if you’re a subscriber of network X, and you’re visiting a country where X has no coverage, X will have an agreement with network Y, which connects you for a fee. There are hundreds of these deals in play at any given time, and Ubiquitilink would just be one more — except its coverage will eventually be global. Maybe you can’t reach X or Y; you’ll always be able to reach U.

The speeds and services available will depend on what mobile networks want. Not everyone wants or needs the same thing, of course, and a 3G fallback might be practical where an LTE connection is less so. But the common denominator will be data enough to send and receive text at the least.

It’s worth noting also that this connection will be in some crucial ways indistinguishable from other connections: it won’t affect encryption, for instance.

This will of course necessitate at least a thousand satellites, by Miller’s count. But in the meantime, limited service will also be available in the form of timed passes — you’ll have no signal for 55 minutes, then signal for five, during which you can send and receive what may be a critical text or location. This is envisioned as a specialty service at first, then as more satellites join the constellation, that window expands until it’s 24/7 and across the whole face of the planet, and it becomes a normal consumer good.

Emergency fallback

While your network provider will probably charge you the usual arm and leg for global roaming on demand (it’s their prerogative), there are some services Ubiquitilink will provide for free; the value of a global communication system is not lost on Miller.

“Nobody should ever die because the phone in their pocket doesn’t have signal,” he said. “If you break down in the middle of Death Valley you should be able to text 911. Our vision is this is a universal service for emergency responders and global E-911 texting. We’re not going to charge for that.”

An emergency broadcast system when networks are down is also being planned — power outages following disasters are times when people are likely to panic or be struck by a follow-up disaster like a tsunami or flooding, and reliable communications at those times could save thousands and vastly improve recovery efforts.

“We don’t want to make money off saving people’s lives, that’s just a benefit of implementing this system, and the way it should be,” Miller said.

It’s a whole lot of promises, but the team and the tech seem capable of backing them up. Initial testing is complete and birds are in the air — now it’s a matter of launching the next thousand or so.

Powered by WPeMatico

Deploy the space harpoon

Posted by | airbus, Gadgets, hardware, harpoons, moby dick, robotics, science, Space, space debris, space junk | No Comments

Watch out, starwhales. There’s a new weapon for the interstellar dwellers whom you threaten with your planet-crushing gigaflippers, undergoing testing as we speak. This small-scale version may only be good for removing dangerous orbital debris, but in time it will pierce your hypercarbon hides and irredeemable sun-hearts.

Literally a space harpoon. (Credit: Airbus)

However, it would be irresponsible of me to speculate beyond what is possible today with the technology, so let a summary of the harpoon’s present capabilities suffice.

The space harpoon is part of the RemoveDEBRIS project, a multi-organization European effort to create and test methods of reducing space debris. There are thousands of little pieces of who knows what clogging up our orbital neighborhood, ranging in size from microscopic to potentially catastrophic.

There are as many ways to take down these rogue items as there are sizes and shapes of space junk; perhaps it’s enough to use a laser to edge a small piece down toward orbital decay, but larger items require more hands-on solutions. And seemingly all nautical in origin: RemoveDEBRIS has a net, a sail and a harpoon. No cannon?

You can see how the three items are meant to operate here:

The harpoon is meant for larger targets, for example full-size satellites that have malfunctioned and are drifting from their orbit. A simple mass driver could knock them toward the Earth, but capturing them and controlling descent is a more controlled technique.

While an ordinary harpoon would simply be hurled by the likes of Queequeg or Dagoo, in space it’s a bit different. Sadly it’s impractical to suit up a harpooner for EVA missions. So the whole thing has to be automated. Fortunately the organization is also testing computer vision systems that can identify and track targets. From there it’s just a matter of firing the harpoon at it and reeling it in, which is what the satellite demonstrated today.

This Airbus-designed little item is much like a toggling harpoon, which has a piece that flips out once it pierces the target. Obviously it’s a single-use device, but it’s not particularly large and several could be deployed on different interception orbits at once. Once reeled in, a drag sail (seen in the video above) could be deployed to hasten reentry. The whole thing could be done with little or no propellant, which greatly simplifies operation.

Obviously it’s not yet a threat to the starwhales. But we’ll get there. We’ll get those monsters good one day.

Powered by WPeMatico

The Opportunity Mars rover’s greatest shots and discoveries

Posted by | Gadgets, Government, hardware, mars rovers, NASA, robotics, science, Space | No Comments

Opportunity’s mission is complete, and the rover that was supposed to last 90 days closes the book on 15 years of exploration. It’s sad, but it’s also a great time to look back on the mission and see some of its greatest hits. Here are 25 images showing where it came from, where it went, and what it discovered on its marathon-length journey.

Powered by WPeMatico