jpl

Mars Rover Curiosity is switching brains so it can fix itself

Posted by | Gadgets, jpl, mars rover, NASA, robotics, science, Space, TC | No Comments

When you send something to space, it’s good to have redundancy. Sometimes you want to send two whole duplicate spacecraft just in case — as was the case with Voyager — but sometimes it’s good enough to have two of critical components. Mars Rover Curiosity is no exception, and it is now in the process of switching from one main “brain” to the other so it can do digital surgery on the first.

Curiosity landed on Mars with two central computing systems, Side-A and Side-B (not left brain and right brain — that would invite too much silliness). They’re perfect duplicates of each other, or were — it was something of a bumpy ride, after all, and cosmic radiation may flip a bit here and there.

The team was thankful to have made these preparations when, on sol 200 in February of 2013 (we’re almost to sol 2,200 now), the Side-A computer experienced a glitch that ended up taking the whole rover offline. The solution was to swap over to Side-B, which was up and running shortly afterwards and sending diagnostic data for its twin.

Having run for several years with no issues, Side-B is now, however, having its own problems. Since September 15 it has been unable to record mission data, and it doesn’t appear to be a problem that the computer can solve itself. Fortunately, in the intervening period, Side-A has been fixed up to working condition — though it has a bit less memory than it used to, since some corrupted sectors had to be quarantined.

“We spent the last week checking out Side A and preparing it for the swap,” said Steven Lee, deputy project manager of the Curiosity program at JPL, in a mission status report. “We are operating on Side A starting today, but it could take us time to fully understand the root cause of the issue and devise workarounds for the memory on Side B. It’s certainly possible to run the mission on the Side-A computer if we really need to. But our plan is to switch back to Side B as soon as we can fix the problem to utilize its larger memory size.”

No timeline just yet for how that will happen, but the team is confident that they’ll have things back on track soon. The mission isn’t in jeopardy — but this is a good example of how a good system of redundancies can add years to the life of space hardware.

Powered by WPeMatico

NASA’s Open Source Rover lets you build your own planetary exploration platform

Posted by | DIY, Education, Gadgets, Government, jpl, mars rover, NASA, robotics, science, Space | No Comments

Got some spare time this weekend? Why not build yourself a working rover from plans provided by NASA? The spaceniks at the Jet Propulsion Laboratory have all the plans, code, and materials for you to peruse and use — just make sure you’ve got $2,500 and a bit of engineering know-how. This thing isn’t made out of Lincoln Logs.

The story is this: after Curiosity landed on Mars, JPL wanted to create something a little smaller and less complex that it could use for educational purposes. ROV-E, as they called this new rover, traveled with JPL staff throughout the country.

Unsurprisingly, among the many questions asked was often whether a class or group could build one of their own. The answer, unfortunately, was no: though far less expensive and complex than a real Mars rover, ROV-E was still too expensive and complex to be a class project. So JPL engineers decided to build one that wasn’t.

The result is the JPL Open Source Rover, a set of plans that mimic the key components of Curiosity but are simpler and use off the shelf components.

“I would love to have had the opportunity to build this rover in high school, and I hope that through this project we provide that opportunity to others,” said JPL’s Tom Soderstrom in a post announcing the OSR. “We wanted to give back to the community and lower the barrier of entry by giving hands on experience to the next generation of scientists, engineers, and programmers.”

The OSR uses Curiosity-like “Rocker-Bogie” suspension, corner steering and pivoting differential, allowing movement over rough terrain, and the brain is a Raspberry Pi. You can find all the parts in the usual supply catalogs and hardware stores, but you’ll also need a set of basic tools: a bandsaw to cut metal, a drill press is probably a good idea, a soldering iron, snips and wrenches, and so on.

“In our experience, this project takes no less than 200 person-hours to build, and depending on the familiarity and skill level of those involved could be significantly more,” the project’s creators write on the GitHub page.

So basically unless you’re literally rocket scientists, expect double that. Although JPL notes that they did work with schools to adjust the building process and instructions.

There’s flexibility built into the plans, too. So you can load custom apps, connect payloads and sensors to the brain, and modify the mechanics however you’d like. It’s open source, after all. Make it your own.

“We released this rover as a base model. We hope to see the community contribute improvements and additions, and we’re really excited to see what the community will add to it,” said project manager Mik Cox. “I would love to have had the opportunity to build this rover in high school, and I hope that through this project we provide that opportunity to others.”

Powered by WPeMatico

First CubeSats to travel the solar system snap ‘Pale Blue Dot’ homage

Posted by | cubesat, Gadgets, Insight, jpl, NASA, science, Space, TC | No Comments

The InSight launch earlier this month had a couple of stowaways: a pair of tiny CubeSats that are already the farthest such tiny satellites have ever been from Earth — by a long shot. And one of them got a chance to snap a picture of their home planet as an homage to the Voyager mission’s famous “Pale Blue Dot.” It’s hardly as amazing a shot as the original, but it’s still cool.

The CubeSats, named MarCO-A and B, are an experiment to test the suitability of pint-size craft for exploration of the solar system; previously they have only ever been deployed into orbit.

That changed on May 5, when the InSight mission took off, with the MarCO twins detaching on a similar trajectory to the geology-focused Mars lander. It wasn’t long before they went farther than any CubeSat has gone before.

A few days after launch MarCO-A and B were about a million kilometers (621,371 miles) from Earth, and it was time to unfold its high-gain antenna. A fisheye camera attached to the chassis had an eye on the process and took a picture to send back home to inform mission control that all was well.

But as a bonus (though not by accident — very few accidents happen on missions like this), Earth and the moon were in full view as MarCO-B took its antenna selfie. Here’s an annotated version of the one above:

“Consider it our homage to Voyager,” said JPL’s Andy Klesh in a news release. “CubeSats have never gone this far into space before, so it’s a big milestone. Both our CubeSats are healthy and functioning properly. We’re looking forward to seeing them travel even farther.”

So far it’s only good news and validation of the idea that cheap CubeSats could potentially be launched by the dozen to undertake minor science missions at a fraction of the cost of something like InSight.

Don’t expect any more snapshots from these guys, though. A JPL representative told me the cameras were really only included to make sure the antenna deployed properly. Really any pictures of Mars or other planets probably wouldn’t be worth looking at twice — these are utility cameras with fisheye lenses, not the special instruments that orbiters use to get those great planetary shots.

The MarCOs will pass by Mars at the same time that InSight is making its landing, and depending on how things go, they may even be able to pass on a little useful info to mission control while it happens. Tune in on November 26 for that!

Powered by WPeMatico

NASA’s InSight Mars lander will gaze (and drill) into the depths of the Red Planet

Posted by | Gadgets, hardware, Insight, jpl, mars lander, NASA, robotics, science, Space, TC | No Comments

NASA’s latest mission to Mars, InSight, is set to launch early Saturday morning in pursuit of a number of historic firsts in space travel and planetology. The lander’s instruments will probe the surface of the planet and monitor its seismic activity with unprecedented precision, while a pair of diminutive CubeSats riding shotgun will test the viability of tiny spacecraft for interplanetary travel.

Saturday at 4:05 AM Pacific is the first launch opportunity, but if weather forbids it, they’ll just try again soon after — the chances of clouds sticking around all the way until June 8, when the launch window closes, are slim to none.

InSight isn’t just a pretty name they chose; it stands for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, at least after massaging the acronym a bit. Its array of instruments will teach us about the Martian interior, granting us insight (see what they did there?) into the past and present of Mars and the other rocky planets in the solar system, including Earth.

Bruce Banerdt, principal investigator for the mission at NASA’s Jet Propulsion Laboratory, has been pushing for this mission for more than two decades, after practically a lifetime working at the place.

“This is the only job I’ve ever had in my life other than working in the tire shop during the summertime,” he said in a recent NASA podcast. He’s worked on plenty of other missions, of course, but his dedication to this one has clearly paid off. It was actually originally scheduled to launch in 2016, but some trouble with an instrument meant they had to wait until the next launch window — now.

InSight is a lander in the style of Phoenix, about the size of a small car, and shot towards Mars faster than a speeding bullet. The launch is a first in itself: NASA has never launched an interplanetary mission from the West coast, but conditions aligned in this case, making California’s Vandenberg air base the best option. It doesn’t even require a gravity assist to get where it’s going.

Did you know? I’ll be the 1st spacecraft to travel from the West Coast of the U.S. to another planet. My rocket can do that—we’ve got the power. 🚀
More on launch: https://t.co/DZ8GsDTfGc pic.twitter.com/VOWiMPek5x

— NASAInSight (@NASAInSight) May 2, 2018

“Instead of having to go to Florida and using the Earth’s rotation to help slingshot us into orbit… We can blast our way straight out,” Banerdt said in the same podcast. “Plus we get to launch in a way that is gonna be visible to maybe 10 million people in Southern California because this rocket’s gonna go right by LA, right by San Diego. And if people are willing to get up at four o’clock in the morning, they should see a pretty cool light show that day.”

The Atlas V will take it up to orbit and the Centaur will give it its push towards Mars, after which it will cruise for six months or so, arriving late in the Martian afternoon on November 26 (Earth calendar).

Its landing will be as exciting (and terrifying) as Phoenix’s and many others. When it hits the Martian atmosphere, InSight will be going more than 13,000 MPH. It’ll slow down first using the atmosphere itself, losing 90 percent of its velocity as friction against a new, reinforced heat shield. A parachute takes off another 90 percent, but it’ll still be going more than 100 MPH, which would make for an uncomfortable landing. So a couple thousand feet up it will transition to landing jets that will let it touch down at a stately 5.4 MPH at the desired location and orientation.

After the dust has settled (literally) and the lander has confirmed everything is in working order, it will deploy its circular, fanlike solar arrays and get to work.

Robot arms and self-hammering robomoles

InSight’s mission is to get into the geology of Mars with more detail and depth than ever before. To that end it is packing gear for three major experiments.

SEIS is a collection of six seismic sensors (making the name a tidy bilingual, bidirectional pun) that will sit on the ground under what looks like a tiny Kingdome and monitor the slightest movement of the ground underneath. Tiny high-frequency vibrations or longer-period oscillations, they should all be detected.

“Seismology is the method that we’ve used to gain almost everything we know, all the basic information about the interior of the Earth, and we also used it back during the Apollo era to understand and to measure sort of the properties of the inside of the moon,” Banerdt said. “And so, we want to apply the same techniques but use the waves that are generated by Mars quakes, by meteorite impacts to probe deep into the interior of Mars all the way down to its core.”

The heat flow and physical properties probe is an interesting one. It will monitor the temperature of the planet below the surface continually for the duration of the mission — but in order to do so, of course, it has to dig its way down. For that purpose it’s installed with what the team calls a “self-hammering mechanical mole.” Pretty self-explanatory, right?

The “mole” is sort of like a hollow, inch-thick, 16-inch-long nail that will use a spring-loaded tungsten block inside itself to drive itself into the rock. It’s estimated that it will take somewhere between 5,000 and 20,000 strikes to get deep enough to escape the daily and seasonal temperature changes at the surface.

Lastly there’s the Rotation and Interior Structure Experiment, which actually doesn’t need a giant nail, a tiny Kingdome or anything like that. The experiment involves tracking the position of InSight with extreme precision as Mars rotates, using its radio connection with Earth. It can be located to within about four inches, which when you think about it is pretty unbelievable to begin with. The way that position varies may indicate a wobble in the planet’s rotation and consequently shed light on its internal composition. Combined with data from similar experiments in the ’70s and ’90s, it should let planetologists determine how molten the core is.

“In some ways, InSight is like a scientific time machine that will bring back information about the earliest stages of Mars’ formation 4.5 billion years ago,” said Banerdt in an earlier news release. “It will help us learn how rocky bodies form, including Earth, its moon, and even planets in other solar systems.”

In another space first, Insight has a robotic arm that will not just do things like grab rocks to look at, but will grab items from its own inventory and deploy them into its workspace. Its little fingers will grab handles on top of each deployable instrument and grab it just like a human might. Well, maybe a little differently, but the principle is the same. At nearly 8 feet long, it has a bit more reach than the average astronaut.

Cubes riding shotgun

One of the MarCO cubesats.

Insight is definitely the main payload, but it’s not the only one. Launching on the same rocket are two CubeSats, known collectively as Mars Cube One, or MarCO. These “briefcase-size” guys will separate from the rocket around the same time as InSight, but take slightly different trajectories. They don’t have the control to adjust their motion and enter an orbit, so they’ll just zoom by Mars right as Insight is landing.

CubeSats launch all the time, though, right? Sure — into Earth orbit. This will be the first attempt to send CubeSats to another planet. If successful there’s no limit to what could be accomplished — assuming you don’t need to pack anything bigger than a breadbox.

The spacecraft aren’t carrying any super-important experiments; there are two in case one fails, and both are only equipped with UHF antennas to send and receive data, and a couple of low-resolution visible-light cameras. The experiment here is really the CubeSats themselves and this launch technique. If they make it to Mars, they might be able to help send InSight’s signal home, and if they keep operating beyond that, it’s just icing on the cake.

You can follow along with InSight’s launch here; there’s also the traditional anthropomorphized Twitter account. We’ll post a link to the live stream as soon as it goes up.

Powered by WPeMatico

Rocket blast from the past: Voyager 1 fires thrusters last used in 1980

Posted by | Gadgets, jpl, NASA, science, Space, TC, voyager | No Comments

 While some spacecraft get the chance to go out in a blaze of glory, others are in it for the long haul – Voyager 1 more so than any other. The mission celebrated its 40th anniversary this year, but it’s not just a lump of metal floating through interstellar space: that baby still runs. Thrusts, rather. Read More

Powered by WPeMatico

NASA tests robotic tools to crack the surface of icy moons

Posted by | europa, Gadgets, jpl, NASA, robotics, science, Space, TC | No Comments

 While the Mars rovers are searching the red planet for water over the next decade, there are whole moons full of the stuff just waiting for us to come visit. At least, that’s the theory. But missions to Europa and Titan are still hypothetical, so in the meantime NASA is toying with ideas about how a lander would get through the miles of ice that lie on top of these extraterrestrial oceans. Read More

Powered by WPeMatico

NASA tech could track firefighters where GPS can’t reach

Posted by | Gadgets, indoor mapping, jpl, NASA, science, TC, Wearables | No Comments

pointer2 In the chaotic environment of a fire or disaster area, knowing where your fellow firefighters and first responders are is of the utmost importance, but GPS and other positional tracking systems aren’t always reliable. A project from NASA’s Jet Propulsion Laboratory aims to solve this with a tracker that relies on a totally different kind of electromagnetic phenomenon. Read More

Powered by WPeMatico

NASA’s asteroid-harvesting mission solicits proposals for its robotic spacecraft

Posted by | artificial intelligence, asteroid mining, asteroids, Gadgets, jpl, NASA, robotics, science, Space, TC | No Comments

arm_nasa_asteroid_mission Asteroid mining is coming soon to a planet near you: this planet, and in 2021, to be specific. But NASA’s Asteroid Redirect Mission has lots of work to do before that point. Today the space-faring organization issued an official “request for proposals” from four partners on how they would go about creating the robotic spacecraft that would perform the actual asteroid… Read More

Powered by WPeMatico